Monatshefte für Chemie 110, 103-108 (1979)

Die Kristallstruktur des Komplexnitrides NbMoN $_{1-x}$ ($x \leq 0,1$)

Alfred Vendl

Institut für chemische Technologie anorganischer Stoffe, Technische Universität Wien, A-1060 Wien, Österreich

(Eingegangen 26. Januar 1978. Angenommen 9. Februar 1978)

The Crystal Structure of the Complex Nitride NbMoN_{1-x} ($x \le 0,1$)

The crystal structure of NbMoN_{1-x} has been determined from X-ray powder patterns. It is isotypic with the formerly described^{1,2} complex nitrides NbCrN and Ta_{1-x}Cr_{1+x}N. The tetragonal unit cell contains 6 atoms and belongs to the space group $P4/nmm - D_{4h}^7$. The lattice parameters are: a == 3,095 Å, c = 7,799 Å. The structure is characterized by relatively close packed double layers of Nb-atoms and Mo-atoms parallel to the base plane. The nitrogen atoms are within the octahedral interstitial sites.

(Keywords: Niobium; Nitrides; Tantalum; X-Ray)

Einleitung

Ettmayer¹ konnte die Komplexnitride NbCrN und Ta_{1-x}Cr_{1+x}N im Laufe von Untersuchungen der ternären Systeme Nb/Cr/N und Ta/Cr/N isolieren und strukturmäßig klären. Zur Beschreibung der Kristallstruktur wurde eine tetragonale Elementarzelle vorgeschlagen, die 12 Atome enthält und zur Raumgruppe P4/bm gehört, vor. Nach Jack² läßt sich die Struktur durch eine Elementarzelle mit 6 Atomen und der Raumgruppe P4/nmm beschreiben. Im Rahmen von Untersuchungen des ternären Systems Nb/Mo/N konnte bereits bei einem Druck von 1 bar N₂ die ternäre Verbindung NbMoN_{1-x} ($x \le 0,1$) aufgefunden werden. Obwohl das System Nb/Mo/N bereits Gegenstand eingehender Untersuchungen war³⁻⁸, wurde bisher von keinem Autor ein Komplexnitrid NbMoN_{1-x} beobachtet. Die Phasenverteilung im System Nb/Mo/N in einem Druckbereich von 1—300 bar N₂ bei mittlerer Temperatur wird demnächst veröffentlicht⁹.

Α.	Vendl	

(hkl)	$\sin^2\Theta$ 1000 ber.	$ \frac{\sin^2\Theta}{beob} $	Intensität ber.	Intensität beob.
	- ·	······································	····	
(001)	9.77	9.69	56.3	6
002)	39.08		5.8	
101)	71.81	71.95	14.6	2
003)	87.93	87.93	59.3	7
102)	101.12	101.31	1000.0	100
110)	124.08	124.14	584.3	60
111)	133.85	134.20	10.8	1
103)	149.97	150.17	208.1	23
004)	156.32	156.71	96 4	11
112)	163.16		33	
113)	212.01	212.35	58.3	7
104)	218.36	,	8.0	
005	244.26	244.73	39.7	4
200)	248.16	248.64	186.9	20
201)	257.93		4.3	
114)	280.40	280.81	143.2	16
202)	287.24		1.3	
105)	306.30	306.72	41,8	6
211)	319.96		3.8	_
203)	366.09	336.56	26.2	4
212)	349.28	349.48	281.8	33
006)	351.73		0.1	
115)	368.33	368.74	80.8	9
213)	398.13	397.75	79.1	9
204)	404.48	404.77	77.2	8
106)	413.77	414.03	11.9	1
214)	466.52		4,4	
116)	475.81	_	0.4	
007)	478.74	_	5,7	
205)	492.41	492,93	53,5	6
220)	496,31	495.64	61,6	7
221)	506.08		1,7	
222)	535,39		0,5	
107í	540,78	542,09	90,0	9
215) 215)	554, 45	555,21	36,1	4
301)	568, 12		0,9	—
223 [°])	584,24	584,93	12,5	2
302)	$597,\!43$	597, 89	72,4	8
206)	599,89	_	0,3	_
117 <u>)</u>	602,82	602,08	18,6	2
310)́	620,39	620,96	103,1	12
008í	625,30		0,0	
311)́	630,16		2,9	
303)	646.44	$647,\!44$	24,0	3
224)	652.64	653 51	48.1	5

Tabelle 1. Beugungsdiagramm von NbMoN_{1-x}. Raumgruppe P4/nmm— D_{4h} ⁷ Cu K_{α} -Strahlung

Tabelle 1	(Fortsetzung)
-----------	---------------

(hkl)	$\frac{\sin^2\Theta \ 1000}{\text{ber.}}$	sin ² 0 1000 beob.	Intensität ber.	Intensität beob.
312)	659.47		1.0	
216)	661.92	662.35	15.7	1
108)	687.34		0.0	
3 1 3)	708.32	709.01	24.4	3
304) –	714.67		1.7	
207)	726,90	727.46	18.8	2
225)	740,57	741,10	46.5	$\overline{5}$
118)	749,38		0.0	
314)	776,71	778,14	106.2	12
217)	(788,94	701 77	(184,5	
009)	1791,39	791,77	19.4	21
305)	802,61	803,06	19,5	2
321)	816,27		2,1	
322)	$845,\!59$	846,70	183,7	20
226)	848,04		0.4	
109)	$853,\!43$	852, 19	14.8	2
315)	864,65	865,85	122,6	14
208)	$873,\!45$	_	0,0	
323)	$894,\!44$	895,02	75,0	8
306)	910,08	911,05	13,3	1
(19)	$915,\!47$	915, 10	119,8	12
218)	$935,\!49$		0,0	
324)	962,83	_	8,8	
816)	972, 12		1,9	
227)	$975,\!05$	975, 37	59,3	7
)010)	977,03		5,1	
400)	$992,\!62$	992,88	307.4	32

Tabelle 2. Interatomare Abstände

Atom	Nachbaratome	Abstand (Å)
	4 Mo	2.687
	4 Mo	3.095
${ m Mo}$	4 Nb	2.855
	1 Nb	3,393
	$1\mathrm{N}$	2,203
	4 Nb	3.095
	$4 \mathrm{Nb}$	3.378
	4 Mo	2.855
\mathbf{Nb}	1 Mo	3.393
	4 N	2,215
	1.N	2,203

A. Vendl:

Ergebnisse

Das Pulverdiagramm der isolierten Verbindung NbMoN_{1-x} ($x \le 0,1$) konnte mit einer tetragonalen Elementarzelle indiziert werden. Die Gitterparameter betragen: a = 3,095 Å, c = 7,799 Å. Nach dem Pulverdiagramm scheinen alle Reflexe (hkO) mit h + k = 2n + 1systematisch ausgelöscht zu sein. Ein Vergleich zeigt die Ähnlichkeit des Beugungsmusters mit dem von $Ettmayer^1$ und $Jack^2$ bereits beschriebenen Komplexnitrid NbCrN.

Abb. 1. Anordnung der Atome des Komplexnitrides NbMoN_{1-x} ($x \le 0,1$) in der Elementarzelle

Optimale Übereinstimmung zwischen Intensitätsrechnung und Beobachtung konnte durch die Wahl der von $Jack^2$ vorgeschlagenen Elementarzelle mit 6 Atomen und folgender Verteilung der Atome auf die Punktlagen der Raumgruppe P4/nmm erzielt werden:

2 Nb in (c)
$$0, \frac{1}{2}, z_1$$
 und $\frac{1}{2}, 0, --z_1$
2 Mo in (c) $0, \frac{1}{2}, z_2$ und $\frac{1}{2}, 0, --z_2$
2 N in (c) $0, \frac{1}{2}, z_3$ und $\frac{1}{2}, 0, --z_3$
 $z_1 = 0.335, z_2 = --0.100, z_3 = --0.383$

Die freien Parameter der Atomlagen für Nb, Mo und N sind den von $Jack^2$ angegebenen Parametern z' für die Verbindung NbCrN ähnlich, wobei die hier angegebenen Parameter z gleich — z' sind (Druckfehler in Lit.²).

Die Positionen der Stickstoffatome können wegen ihres geringen Beitrages zur Beugungsintensität durch den hier durchgeführten Intensitätsvergleich zwischen Rechnung und Beobachtung nicht genau festgelegt werden, sie ergeben sich aber zwangsläufig durch die Lücken im Wirtgitter. Der Kristallaufbau der Verbindung NbMoN_{1-x} zeigt deutliche Schichtstruktur senkrecht zur c-Achse mit abwechselnden Doppellagen von Nb-Atomen und Mo-Atomen. Die Stickstoffatome befinden sich in Oktaederlücken und sind jeweils von 5 Niobatomen und einem Mo-Atom (leicht verzerrter Oktaeder) umgeben.

Tab. 1 gibt die Auswertung eines Pulverdiagramms von Nb MoN_{1-x} wieder. Die Übereinstimmung zwischen gerechneten und beobachteten Werten der Intensität ist zufriedenstellend.

In Tab. 2 sind die Atomabstände zu den jeweils nächsten Nachbarn verzeichnet. Die höhere Affinität des Stickstoffs zu Niob führt dazu, daß jedes Stickstoffatom von 5 Niobatomen und jedes Niobatom von 5 annähernd äquidistanten Stickstoffatomen umgeben ist. Jedes Molybdänatom hat nur ein Stickstoffatom als Nachbar.

Abb. 1 zeigt die Anordnung der Atome in der Elementarzelle.

Diskussion

Das Komplexnitrid NbMoN_{1-x} ($x \le 0,1$) gehört dem von Ettmayer¹ und Jack² aufgefundenen Typ von Einlagerungsverbindung an. Das von Nowotny¹⁰ beschriebene Prinzip der Verknüpfung von Übergangsmetalloktaedern mit kleinen Nichtmetallatomen im Zentrum als allgemeines Bauprinzip von Komplexcarbiden und -nitriden ist auch hier erfüllt. Die Mo-Atome zeigen in der Doppellage etwa jene Atomabstände, wie sie im kubisch raumzentrierten Mo-Metall auftreten. Die Doppellagen der Niobatome mit Stickstoffatomen in den Oktaederlücken enthalten dagegen Strukturelemente des kubischen δ -NbN.

Das Wirtgitter žeigt große Ähnlichkeit mit den Strukturen der intermetallischen Phase γ -CuTi, worauf bereits $Jack^2$ verwiesen hat. Die Tatsache, daß im Bereich der Zusammensetzung CuTi zwei Phasen auftreten, läßt die Frage entstehen, ob das γ -CuTi nicht etwa eine durch Stickstoff und/oder Sauerstoff stabilisierte Phase darstellt. Ähnliches tritt zum Beispiel bei Ti₂Fe oder Ti₃Hg auf, wobei beide Phasen durch Sauerstoff stabilisiert sind. Dieses Problem wird Gegenstand eingehender Untersuchungen sein.

Dank

Ich danke Herrn Prof. Dr. P. Ettmayer für die Unterstützung dieser Arbeit und die vielen anregenden Diskussionen. Herrn Prof. Dr. B. Lux danke ich für die Ermöglichung der Arbeit.

Literatur

- ¹ P. Ettmayer, Mh. Chem. **102**, 858 (1971).
- ² D. H. Jack und F. H. Jack, J. of the Iron and Steel Institute 1972, 790.
- ³ A. Taylor und N. J. Doyle, J. of Metals Less-Common 13, 413 (1967).
- ⁴ G. Hörz und E. Steinheil, J. of Less-Common Metals 21, 84 (1970).
- ⁵ G. Hörz und E. Steinheil, Z. für Metallkunde 62, 849 (1971).
- ⁶ G. Hörz und E. Steinheil, Z. für Metallkunde 62, 887 (1971).
- ⁷ G. Hörz und E. Steinheil, Z. für Metallkunde 62, 893 (1971).
- ⁸ G. Hörz und E. Steinheil, J. of Less-Common Metals 27, 243 (1972).
- ⁹ A. Vendl, in Vorbereitung.
- ¹⁰ H. Nowotny, W. Jeitschko und F. Benesovsky, Planseeber. Pulvermet. 12, 31 (1964).